hdu 5130 2014 ACM/ICPC Regional Guangzhou 计算几何

由高中平面解析几何得:平面某一点P与两点A、B满足|PA|=k|PB|,则点P的轨迹是一个圆。
所以应求多边形与圆的公共面积,可将多边形分解为三角形来求。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
/** Sep 9, 2015 3:23:33 PM
* PrjName:hdu5130
* @author Semprathlon
*/
import java.util.*;
import java.io.*;
public class Main {

/**
* @param args
*/
static double sqr(double x){
return x*x;
}
public static void main(String[] args) throws IOException{
// TODO Auto-generated method stub
InputReader in=new InputReader(System.in);
PrintWriter out=new PrintWriter(System.out);
int cas=0;
while(in.nextLine()!=null){
int n=in.nextInt();
double k=in.nextDouble();
Polygon pl=new Polygon(n);
for(int i=0;i<n;i++)
pl.v[i]=new Point(in.nextInt(), in.nextInt());
pl.v[n]=pl.v[0];
Point A=new Point(in.nextDouble(),in.nextDouble());
Point B=new Point(in.nextDouble(), in.nextDouble());
Point O=new Point(-(B.x-k*k*A.x)/(k*k-1), -(B.y-k*k*A.y)/(k*k-1));
double r=Math.sqrt(sqr((B.x-k*k*A.x)/(k*k-1))+sqr((B.y-k*k*A.y)/(k*k-1))-k*k*(sqr(A.x)+sqr(A.y))/(k*k-1)+(sqr(B.x)+sqr(B.y))/(k*k-1));
Round R=new Round(r, O.x, O.y);
double ans=0;
for(int i=0;i<n;i++)
ans+=Round.TriAngleCircleInsection(R, pl.v[i], pl.v[i+1]);
out.println(String.format("Case %d: %.6f", ++cas,Math.abs(ans)));
//out.println(r+" "+O.x+" "+O.y);
//out.println(R.GetCirclePolyIntersectionArea(pl));
}
out.flush();
out.close();
}

}
class Point {
double x, y;

Point() {}
Point(double _x, double _y) {}
Point(Point p) {}
Point add(Point r) {}
Point sub(Point r) {}
Point mul(double r) {}
Point move(double dx, double dy) {}
Point rotate(double a) {}
Point rotate(double dx, double dy, double a) {}
static Point mid(Point a, Point b) {}
static double dist(Point a, Point b) {}
public boolean equals(Point p) {}
static void swap(Point a, Point b) {}
static class Comp implements Comparator<Point> {}

final static double eps = 1e-3;
static int dcmp(double d) {
if (Math.abs(d) < eps)
return 0;
return d > 0 ? 1 : -1;
}

}
class Vector extends Point {
Vector() {}
Vector(double _x, double _y) {}
Vector(Point a, Point b) {}
Vector(Point p) {}
static double angle(Vector a, Vector b) {}
static double angle(Point a, Point b) {}
static double angle(Point o, Point a, Point b) {}
double dot(Vector r) {}
double cross(Vector r) {}
double length() {}
Vector normal() {}
static Point GetLineIntersection(Point p, Vector v, Point q, Vector w) {}
static Point GetLineIntersection(Point p, Point v, Point q, Point w) {}
static Vector add(Vector a, Vector b) {}
static double dot(Vector a, Vector b) {}
static double cross(Vector a, Vector b) {}
static double cross(Point a, Point b) {}
static double cross(Point o, Point a, Point b) {}
static double cross(Point a, Point b, Point c, Point d) {}
static double length(Vector r) {}
}
class Line extends Vector {
Point s, e;

Line() {}
Line(Point _s, Point _e) {}
Line(double x1, double y1, double x2, double y2) {}
Vector vector(){}
static boolean isLineInter(Line l1, Line l2) {}
static boolean isSegInter(Point s1, Point e1, Point s2, Point e2) {}
static boolean isSegInter2(Point p1, Point p2, Point p3, Point p4){}
static boolean isSegInter(Line l1, Line l2) {}
static boolean isSegInter2(Line l1, Line l2) {}
}
class Polygon extends Vector {
int num;
Point[] v;
Polygon() {}
Polygon(int n) {}

boolean IsConvexBag() {
int direction = 0;// 1:右手正螺旋,逆时针 -1:左手正螺旋,顺时针
for (int i = 0; i < num; i++) {
int tmp = dcmp(cross(v[i], v[i + 1], v[i + 1], v[i + 2]));

if (direction == 0) // 避免最初的点出现共线的情况
direction = tmp;

if (direction * tmp < 0) // 只要Vec是凸包,那么无论Vec的旋转方向如何,direction*temp都会>=0
return false;
}
return true;
}

}
class Round extends Vector {
double r;
Point o;
final static double pi = Math.acos(-1.0);

Round(double _r, double _x, double _y) {}
static double Rad2Deg(double rad) {}
static double Deg2Rad(double deg) {}
double Area() {}

static double CommonArea(Round A, Round B) {
double area = 0.0;
Round M = dcmp(A.r - B.r) > 0 ? A : B;
Round N = dcmp(A.r - B.r) > 0 ? B : A;
double D = dist(M.o, N.o);
if (dcmp(M.r + N.r - D) > 0 && dcmp(M.r - N.r - D) < 0) {
double cosM = (M.r * M.r + D * D - N.r * N.r) / (2.0 * M.r * D);
double cosN = (N.r * N.r + D * D - M.r * M.r) / (2.0 * N.r * D);
double alpha = 2.0 * Math.acos(cosM);
double beta = 2.0 * Math.acos(cosN);

double TM = 0.5 * M.r * M.r * Math.sin(alpha);
double TN = 0.5 * N.r * N.r * Math.sin(beta);
double FM = 0.5 * alpha / pi * M.Area();
double FN = 0.5 * beta / pi * N.Area();
area = FM + FN - TM - TN;
} else if (dcmp(M.r - N.r - D) >= 0) {
area = N.Area();
}
return area;
}

/* 判断圆与多边形的关系 */
boolean IsFitPoly(Polygon pl) {
for (int i = 0; i <= pl.num; i++) {
int k = dcmp(Math.abs(cross(o, pl.v[i], o, pl.v[i + 1]) / dist(pl.v[i], pl.v[i + 1])) - r);
if (k < 0)
return false;
}
return true;
}

boolean IsInPoly(Polygon pl) {
double CircleAngle = 0.0; // 环绕角
for (int i = 1; i <= pl.num; i++) // 注意重复边不计算
if (dcmp(cross(o, pl.v[i], o, pl.v[i + 1])) >= 0)
CircleAngle += angle(o, pl.v[i], pl.v[i + 1]);
else
CircleAngle -= angle(o, pl.v[i], pl.v[i + 1]);

if (dcmp(CircleAngle) == 0) // CircleAngle=0, Peg在多边形外部
return false;
else if (dcmp(CircleAngle - pi) == 0 || dcmp(CircleAngle + pi) == 0) // CircleAngle=180,
// Peg在多边形边上(不包括顶点)
{
if (dcmp(r) == 0)
return true;
} else if (dcmp(CircleAngle - 2 * pi) == 0 || dcmp(CircleAngle + 2 * pi) == 0) // CircleAngle=360,
// Peg在多边形边内部
return true;
else // CircleAngle=(0,360)之间的任意角, Peg在多边形顶点上
{
if (dcmp(r) == 0)
return true;
}
return false;
}

static double TriAngleCircleInsection(Round C, Point A, Point B)
{
Vector OA = new Vector(A.sub(C.o)), OB = new Vector(B.sub(C.o));
Vector BA = new Vector(A.sub(B)), BC = new Vector(C.o.sub(B));
Vector AB = new Vector(B.sub(A)), AC = new Vector(C.o.sub(A));
double DOA = OA.length(), DOB = OB.length(),DAB = AB.length(), r = C.r;
if(dcmp(cross(OA,OB)) == 0) return 0;
if(dcmp(DOA-C.r) < 0 && dcmp(DOB-C.r) < 0) return cross(OA,OB)*0.5;
else if(dcmp(DOB-r)<0 && dcmp(DOA-r) >= 0) {
double x = (dot(BA,BC) + Math.sqrt(r*r*DAB*DAB-cross(BA,BC)*cross(BA,BC)))/DAB;
double TS = cross(OA,OB)*0.5;
return Math.asin(TS*(1-x/DAB)*2/r/DOA)*r*r*0.5+TS*x/DAB;
}
else if(dcmp(DOB-r) >=0 && dcmp(DOA-r) <0 ) {
double y = (dot(AB,AC)+Math.sqrt(r*r*DAB*DAB-cross(AB,AC)*cross(AB,AC)))/DAB;
double TS = cross(OA,OB)*0.5;
return Math.asin(TS*(1-y/DAB)*2/r/DOB)*r*r*0.5+TS*y/DAB;
}
else if(dcmp(Math.abs(cross(OA,OB))-r*DAB)>=0 || dcmp(dot(AB,AC)) <= 0 || dcmp(dot(BA,BC)) <= 0) {
if(dcmp(dot(OA,OB)) < 0) {
if(dcmp(cross(OA,OB)) < 0) return (-Math.acos(-1.0)-Math.asin(cross(OA,OB)/DOA/DOB))*r*r*0.5;
else return ( Math.acos(-1.0)-Math.asin(cross(OA,OB)/DOA/DOB))*r*r*0.5;
}
else return Math.asin(cross(OA,OB)/DOA/DOB)*r*r*0.5;
}
else {
double x = (dot(BA,BC)+Math.sqrt(r*r*DAB*DAB-cross(BA,BC)*cross(BA,BC)))/DAB;
double y = (dot(AB,AC)+Math.sqrt(r*r*DAB*DAB-cross(AB,AC)*cross(AB,AC)))/DAB;
double TS = cross(OA,OB)*0.5;
return (Math.asin(TS*(1-x/DAB)*2/r/DOA)+Math.asin(TS*(1-y/DAB)*2/r/DOB))*r*r*0.5 + TS*((x+y)/DAB-1);
}
}
}

hdu 5130 2014 ACM/ICPC Regional Guangzhou 计算几何

https://devblog.citruxonve.net/posts/9f6b805d/

Author

Semprathlon / Simfae Dean

Posted on

09/09/2015

Updated on

07/19/2023

Licensed under

Comments