PHP Markdown & LaTex test

1

<https: //daringfireball.net/projects/markdown/syntax>
The full documentation of Markdown’s syntax

|Hash函数|数据1|数据2|数据3|数据4|数据1得分|数据2得分|数据3得分|数据4得分|平均分| |—-|—-|—-|—-|—-|—-|—-|—-|—-|—-| |BKDRHash|2|0|4774|481|96.55|100|90.95|82.05|92.64| |APHash|2|3|4754|493|96.55|88.46|100|51.28|86.28| |DJBHash|2|2|4975|474|96.55|92.31|0|100|83.43| |JSHash|1|4|4761|506|100|84.62|96.83|17.95|81.94| |RSHash|1|0|4861|505|100|100|51.58|20.51|75.96| |SDBMHash|3|2|4849|504|93.1|92.31|57.01|23.08|72.41| |PJWHash|30|26|4878|513|0|0|43.89|0|21.95| |ELFHash|30|26|4878|513|0|0|43.89|0|21.95|

Problem Description

Tom was on the way home from school. He saw a matrix in the sky. He found that if we numbered rows and columns of the matrix from 0, then, $ {a} _ {i,j}={C} _ {i}^{j}$
if i < j, $ {a}_{i,j}=0$
Tom suddenly had an idea. He wanted to know the sum of the numbers in some rectangles. Tom needed to go home quickly, so he wouldn’t solve this problem by himself. Now he wants you to help him.
Because the number may be very large, output the answer to the problem modulo a prime p.

Input

Multi test cases(about 8). Each case occupies only one line, contains five integers, $ x_{1}、y_{1}、x_{2}、y_{2}、p.
x_{1}\leq x_{2}\leq {10}^{5},y_{1}\leq y_{2}\leq {10}^{5},2\leq p\leq {10}^{9}$ .

###Latex公式测试
行内公式 $ \delta = \beta / (\alpha + 1) $
行间公式
$$
\frac{O}{I} \approx \frac{A}{1+AF}
$$

$$ 上下标 U_o = A^2 * ( U_+ - U_- ) $$
$$ 上下标 (U_o = A^2 * ( U_+ - U_- )) $$
$$ 上下标 [U_o = A^2 * ( U_+ - U_- )] $$

积分
$ \int_1 ^2 sin x dx $

方程组
$$
\begin{aligned}
\dot{x} & = \sigma(y-x) \newline
\dot{y} & = \rho x - y - xz \newline
\dot{z} & = -\beta z + xy
\end{aligned}
$$

$$
\begin{eqnarray}
&& \frac{\partial x}{\partial C_{ikj}} \
&& \frac{\partial C_{ikj}}{\partial R_{ik}} \
&& \frac{\partial C_{ikj}}{\partial R_{jk}}\
&& a = R_{ik}^2-R_{jk}^2 , b = (R_{ij}^4-a^2)^2
\end{eqnarray}
$$

$$
\left{ \Sigma= { (\theta,\varphi)|0\le \theta \le 2\pi,0\le \varphi \le\frac{\pi}{2} \right}
$$

Dashboard

Author

Semprathlon / Simfae Dean

Posted on

05/10/2015

Updated on

07/19/2023

Licensed under

Comments