1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
|
import java.io.*; import java.util.*;
public class Main {
final static int maxn = 110000; static long[] fac = new long[maxn]; static long[] p, a; static long x, y;
static void Get_Fac(long n) { fac[0] = 1; for (int i = 1; i <= n; i++) { fac[i] = fac[i - 1] * i; fac[i] %= n; } }
static void extgcd(long a, long b) { if (b == 0L) { x = 1L; y = 0L; return; } extgcd(b, a % b); long t = x; x = y; y = t - a / b * y; }
static long pow_mod(long n, long m, long mod) { long res = 1L; n %= mod; while (m > 0L) { if ((m & 1L) > 0L) res = res * n % mod; n = n * n % mod; m >>= 1; } return res; }
static long mul_mod(long n, long m, long mod) { long ans = 0L; n %= mod; while (m > 0L) { if ((m & 1L) > 0L) ans = (ans + n) % mod; m >>= 1; n = (n + n) % mod; } return ans; }
static long div_mod(long n, long m, long mod) { return n * pow_mod(m, mod - 2, mod) % mod; }
static long C(long n, long m, long mod) { int a = (int) (n % mod), b = (int) (m % mod); return div_mod(fac[a], mul_mod(fac[a - b], fac[b], mod), mod); }
static long Lucas(long n, long m, long mod) { long ret = 1L; while (n > 0L && m > 0L) { if (n % mod < m % mod) return 0L; ret = mul_mod(ret, C(n, m, mod), mod); ret %= mod; n /= mod; m /= mod; } return ret; }
static long CRT(long n, long[] a, long[] m) { long pro = 1L, res = 0L; for (int i = 0; i < n; i++) pro *= m[i]; for (int i = 0; i < n; i++) { long w = pro / m[i]; extgcd(m[i], w); res = (res + mul_mod(y, mul_mod(w, a[i], pro), pro)) % pro; } return (res + pro) % pro; }
public static void main(String[] args) { InputReader in = new InputReader(System.in); PrintWriter out = new PrintWriter(System.out); int T = in.nextInt(); while (T-- > 0) { long n = in.nextLong(); long m = in.nextLong(); long num = in.nextLong(); p = new long[15]; a = new long[15]; for (int i = 0; i < num; i++) p[i] = in.nextLong(); for (int i = 0; i < num; i++) { Get_Fac(p[i]); a[i] = Lucas(n, m, p[i]); } out.println(CRT(num, a, p)); } out.flush(); out.close(); }
}
|